1 Introduction

This document is intended to progressively demonstrate the technical assets of the Data Validation Technology.

Most of the technical features of the technology will be enlightened by specific process systems. However, validation technology can be and is implemented in most various industrial sectors. Namely, it covers chemical, petrochemical and refining process plants, thermal and nuclear power plants, upstream oil and gas exploitation fields.

Data validation is an extension of data reconciliation. Before demonstrating the technical assets of the validation, the reconciliation concept will be shortly presented.

2 Basic aspects of validation: Data Reconciliation (DR)

Data Reconciliation is the first mathematical method that did address the problem of data validation for linear problems. It exploits information redundancy and (linear) conservation laws to extract accurate and reliable information from measurement data and from the process knowledge. It allows producing a single consistent set of data representing actual process operation, assuming the plant is operated in steady state.

To understand the basic principles of data reconciliation, one must first recognise that plant measurements (including lab analyses) are not 100% error free. When using these measurements without correction to generate plant balances, one usually gets incoherence in these balances.

Some sources of errors in the balances directly depend on sensors themselves:
- intrinsic sensor accuracy;
- sensor calibration;
- sensor location.

A second source of error when calculating plant balances is the small variations in the plant operating conditions and the fact that samples and measurements are not exactly taken at the same time. Using time averages for plant data partly reduces this problem. However, lab analyses are usually carried out at a low frequency, and thus can seldom be averaged.

Finally, one must also realise that in some parts of a plant too many measurements are available whereas in some other parts some measurements are missing and must be back calculated from other measurements.

As shown in details in Section Three, chapter 3, Data Reconciliation can be expressed mathematically as:
Min \(\sum \left(\frac{y_i^* - y_i}{\sigma_i} \right)^2 \)

subject to

\[F(x, y^*) = 0 \]
\[G(x, y^*) \geq 0 \]

where

\(y_i^* \) is the reconciled value of measurement i,
\(y_i \) is the measured value of measurement i,
\(x_j \) is the unmeasured variable j,
\(\sigma_i \) is the standard deviation of measurement i, defining its confidence interval,

\[F(x, y^*) = 0 \]
\[G(x, y^*) \geq 0 \]

are the process equality constraints.

The term

\(\left(\frac{y_i^* - y_i}{\sigma_i} \right)^2 \)

is called the penalty of measurement i.

In early publications on DR, equality constraints were considered linear. Thus, one obtains a quadratic formulation, where the Jacobian matrix of F is constant. It is a Gaussian regression problem: given a set \((y, \sigma_y) \), the algorithm provides \(x \) and \(y^* \) vectors together with their standard deviation \(\sigma_y^* \) (when computed).

When inequality constraints were not considered, some values \(y \) or \(x \) could be negative, what had no physical meaning in chemical or mechanical processes, where most variables must be positive (e.g. pressure, flowrate, mole fraction): it was considered as a source of information because one had to find which measurement was responsible for that negative value. Later on simple inequalities \(y \geq 0, x \geq 0 \) were considered.

When \(F \) or \(G \) are non linear, the DR problem can be solved by sequential linearization. The minimisation problem is solved iteratively, using algorithms such as SQP (sequential quadratic programming). It is now possible in some commercial codes to calculate not only the reconciled values of measurements, \(y^*, \sigma_y^* \), but also unmeasured state variables \(x, \sigma_x \), and some key performance indicators related to measured and unmeasured state variables \(y^*, x \) well as their uncertainty \(\sigma_{KPI} \).

Another need to be answered is the identification and elimination of gross errors in the measurement data. This is a key asset of modern validation tools. We use the term data validation instead of DR, when all these features are exploited in the corresponding software.
tool, together with the use of thermodynamic conservation and equilibrium laws besides the
mass balance equations.

The validation problem is solved using an interior point SQP solver in the VALI software
[ref. 1] that will be considered as an example in the subsequent applications.

2.1 Redundancy analyses: local / overall

The level of redundancy is the number of measurements, which are available beyond the
absolute minimum needed to calculate the system. Three different cases can be encountered:
- If a system’s redundancy is negative then there is not enough information to determine
 the state of the system. Additional measurements need to be introduced.
- A local redundancy equal to zero means that the system is globally just calculable.
- And finally, if a system has a positive redundancy, DR can use it as a source of
 information to correct the measurements and increase their accuracy. In fact, each
 measurement is corrected as slightly as possible but in such a way that the reconciled
 measurements match all the constraints of the process model.

However, overall redundancy is not enough. It has also to be achieved at local scale. Indeed,
redundancy can be positive at global scale, but negative locally; consequently, information is
lacking to completely describe the whole process.

This point is illustrated with the example on figure 1, based on a typical synthesis loop.
Components A and B are introduced into the process feed, and converted into component C
in the reactor unit “SYNTHES” (2C = 3A + B). Afterwards, the product ABC is separated in
three distinct streams. One is recycled upstream in the process, another represents a purge,
and finally an outlet stream contains only the compound C.

Figure 1: Process flow diagram (PFD) of a synthesis loop

Let us consider a process model restricted to mass balances. Measured variables are shown
on figure 1. This simple process model presents a global redundancy level of 2 (20 equations
for 18 unmeasured variables). However, local redundancy of unit “SEP-2” is equal to zero. If
one of the measurements around this unit was missing then global redundancy of the model
would still be 1 but local redundancy of unit “SEP-2” would be -1. Therefore, system would not be reconcilable until a supplementary measurement around the mentioned unit has been provided.

2.2 If complementary measurement(s) needed: which one(s)?

If the available measurement set is not enough to calculate all required process performance parameters, how to propose an extra set from which complementary measurements can be chosen? Thus, the system becomes either just calculable or locally redundant, but necessarily globally redundant, as illustrated before.

Consider the previous example, but where we would remove the total flow rate measurement of stream “purge”. Reconciliation software would then propose a set of variables from which possible complementary measurements ought to be chosen. Namely, software would propose in this case to choose between partial flow rates of compounds A and B in either stream “abc” or “purge”, or compound C partial flow rates in either stream “abc” or “c_prod”.

If it is not possible to add any measurement to the system (because of economical constraints for example), another way of avoiding negative redundancy is to aggregate some units in the model as a more global “black box” (that simply ensures global balances to be satisfied). Less information will be obtained locally, but this may allow estimating nevertheless the required KPIs.

2.3 Increased accuracy on measured data: why?

As explained before, data reconciliation is based on measurement redundancy. This concept is not limited to replicate measurements of the same variable by separate sensors; it includes the concept of topological redundancy, where a single variable can be estimated in several independent ways, from separate sets of measurements. Therefore, a posteriori accuracy of validated data will be better than a priori accuracy of measured data. A priori and a posteriori means before and after consistency treatment or in other words before and after validation and reconciliation.

In the previous example, unit “MIX-2” presented a level 2 redundancy. Indeed, for 5 equations and 9 variables (and thus 4 degrees of freedom) we have 6 measurements (6 – 4 = 2). Table 1 shows the a priori and the a posteriori accuracy of those measurements around unit “MIX-2”.

Table 1: DR back corrects measurements and increases their accuracy

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AD_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flowrate</td>
<td>t/d</td>
<td>1016.0</td>
<td>3.00%</td>
<td>1042.9</td>
</tr>
<tr>
<td>Partial Flowrate (A) t/d</td>
<td>131.0</td>
<td>3.00%</td>
<td>180.1</td>
<td>2.98%</td>
</tr>
<tr>
<td>Partial Flowrate (B) t/d</td>
<td>885.0</td>
<td>3.00%</td>
<td>862.8</td>
<td>2.00%</td>
</tr>
<tr>
<td>RECYCLED Flowrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.0</td>
<td>3.00%</td>
<td>30.0</td>
<td>3.00%</td>
<td></td>
</tr>
<tr>
<td>AD_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial Flowrate (A)</td>
<td>190.0</td>
<td>3.00%</td>
<td>190.5</td>
<td>1.60%</td>
</tr>
<tr>
<td>A - 3*B</td>
<td>0.0</td>
<td>0.00%</td>
<td>0.0</td>
<td>0.00%</td>
</tr>
</tbody>
</table>
Reconciled measurements are more accurate than raw data when measurement redundancy is available. But when no redundancy is available locally, no improvement can be expected. This is the case for the estimation of the recycled flow rate: the measured value is not corrected, and its accuracy is not improved. When some measurement is not corrected that does not imply it can be trusted; this would only be the case if the standard deviation would decrease.

2.4 DR avoids error propagation

Progress in automatic data collection has faced plant operators with a flood of data. Tools are needed to extract and fully exploit the relevant information it contains. Furthermore, most performance parameters are often not directly measured, but calculated from measured values. Thus, random errors on measurements also propagate in the estimation of key performance indicators KPIs. Data reconciliation, on the contrary, allows state estimation and measurement correction problems to be addressed in a global way. As a result, validation technology avoids error propagation, and provides the most likely estimate of the actual operating point of the process. Thus, plant can safely be operated closer to limits.

Illustration of error propagation is addressed in Table 2 for the example considered before (Figure 1). The goal is to estimate the flow of component C in the process output.

Table 2: Error propagation

<table>
<thead>
<tr>
<th></th>
<th>Measured</th>
<th>Accuracy</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Reconciled</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A in</td>
<td>t/d</td>
<td>181,0</td>
<td>3,00%</td>
<td>181</td>
<td>181</td>
<td>131</td>
<td>190,1</td>
</tr>
<tr>
<td>B in</td>
<td>t/d</td>
<td>685,0</td>
<td>3,00%</td>
<td>685</td>
<td>835</td>
<td>685</td>
<td>852,8</td>
</tr>
<tr>
<td>AB in</td>
<td>t/d</td>
<td>1016,0</td>
<td>3,00%</td>
<td>1016</td>
<td>1016</td>
<td>1016</td>
<td>1042,6</td>
</tr>
<tr>
<td>Balance in</td>
<td>t/d</td>
<td>-50,0</td>
<td>/</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>/</td>
</tr>
<tr>
<td>ABC purge</td>
<td>t/d</td>
<td>72,0</td>
<td>3,00%</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>72,0</td>
</tr>
<tr>
<td>C cut</td>
<td>t/d</td>
<td>/</td>
<td>/</td>
<td>994</td>
<td>944</td>
<td>944</td>
<td>959,8</td>
</tr>
</tbody>
</table>

Because raw measurements are not error free, mass balance equation around mixer “MIX-1” is not respected (fourth row of Table 2). Cases 1 to 3 show what happen when each of the three (process inlet) flow rates are manually corrected to close the mass balance. the flow rate of stream “C” being computed afterwards.

In the last case DR is used to provide a consistent and accurate set of reconciled measurements. Indeed, Table 2 shows a balance value equal to zero.

Note that measurements may be considered as correct since reconciled values are inside their confidence limits. Knowing that the standard deviation of flow measurements is 3% of the measured value, one obtains for outlet compound C flow rate:

- **with DR**: a standard deviation equal to 1,80 % with a estimate of 960 t/d
- **with manual correction**: a spread of estimates equal to 5,03 % (from 944 to 994 t/d);

Thus, DR avoids error propagation and so provides more accurate computed parameters than those calculated by less rigorous or ad hoc correction modes. Plant engineers have to “solve” that type of problem anyway, even if they don’t have the appropriate tool.
2.5 Process measurements to be exploited

KPI can be determined accurately by validation of process measurement data. Their knowledge is very useful for many purposes, e.g. revamping, energy integration, improved follow-up of the plant, possibility of working closer to specifications, detecting degradation of equipment performance, etc.

A hydrogen plant process is used to illustrate the determination of accurate and reliable KPI. Namely, this example concerns the steam to carbon ratio (S/C) in the steam reformer feed, that is one of the key control parameters in such plants. It allows controlling the conversion of methane to carbon oxide and hydrogen while avoiding carbon deposition on the catalyst. Two different cases were studied to compute this ratio:
- First, DR was not considered. Ratio S/C was calculated from raw measurements of flow rates and compositions of process inlets (steam and natural gas) and reforming gas recycled.
- Afterwards, the same KPI was determined by means of DR.

Each of these two cases were reassessed, considering a measurement error on the steam flow rate (e.g. due to a leak). Namely, the steam flow rate is measured at either 72 t/h or 78 t/h.

Results shown in table 3 example demonstrate that the uncertainty on the S/C ratio is reduced when data reconciliation is performed. Also, reconciled S/C ratio is less sensitive to the flow rate measurement error, which is detected and corrected by data reconciliation. Thus, reconciliation detects errors in available measurements and yields accurately consistent and complete estimates of measured as well as unmeasured process parameters.

Table 3: KPI computation

<table>
<thead>
<tr>
<th>Without meas. errors</th>
<th>With meas. errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/C ratio</td>
<td>rel. error</td>
</tr>
<tr>
<td>without DR</td>
<td>3.545 4.24%</td>
</tr>
<tr>
<td>with DR</td>
<td>3.514 3.52%</td>
</tr>
</tbody>
</table>

Furthermore, in industrial practice one must take a safety margin for the S/C ratio to avoid carbon deposition in the catalyst. With DR safety margin can be thinner; steam consumption is reduced and therefore plant operation costs less.

Here below a real industrial case encountered in a hydrogen plant is described, for which validation technology was applied. In a hydrogen plant (operated by ERE company), the feed gas composition was not monitored accurately; measurement errors were leading to an approximate knowledge of the steam/carbon ratio [ref. 2], uncertainty being in the order of 30%. However, the hydrogen production efficiency and cost are strongly related to this ratio. Indeed a low S/C ratio decreases energy consumption. Therefore, a potential return of 0.5 Mio Euro/year had been identified. On the other side, a low S/C ratio could lead to carbon deposition (see Figure 2) entailing a risk of catalyst damage (shutdown for replacement costs 5 Mio Euro).
With online validation software the steam/carbon ratio is determined nowadays with a precision of 1%. This allows operating at the optimal point where energy costs are mastered and carbon deposition is avoided. This example enlightens validation software capability to allow operation closer to its limits, taking care of safety constraints.

3 Specific assets of information validation

Data validation is an extension of DR. In that case the set of corrected measurements and other calculated data respect linear and non-linear constraints (mass, components and energy balances, reaction constraints as well as physical and chemical thermodynamic equilibrium constraints). Furthermore the technology includes data filtering, gross error detection/elimination, and it also provides the a posteriori accuracy of all the calculated data. Therefore, accurate and reliable key performance indicators (KPI) are determined, as well as their accuracy. Moreover, validation software detects faulty sensors and pinpoints degradation of equipment performance (heat rate, compressor efficiency, etc).

3.1 Accuracy of non measured but calculated data

Unmeasured variables of the system are calculated and their accuracy is quantified on basis of the measurements that are related to them. Therefore, in addition to providing substitution values for failed instruments, data validation software also calculates values that are not directly measured. Validation acts as a set of "soft sensors" that are robust and accurate because they are based on the reconciled values of all the measurements. Typically, validation technology provides three times more calculated data (and their accuracy), than the number of effectively measured data.

Benefits are undeniable, costly lab analyses can be avoided. For instance, on the chemical site of Wacker Chemie (Germany) an on-line implementation of validation software reduced the number of routine analyses up to 40% (see Figure 3) [ref. 3].
Figure 3: Reduction of lab analysis cost (courtesy of Wacker Chemie – ref. 3)

![Graph showing reduction of lab analysis cost](image)

Figure 4: Sum of weighted squares of measurement corrections (courtesy of Wacker Chemie – ref. 3)

![Graph showing sum of weighted squares of measurement corrections](image)

Wacker considered validation as a revolutionary way for quality follow-up of their plants: f_{obj}, the sum of weighted squares of measurement corrections were checked for three years (see Figure 4) [ref. 3]. They showed a reduction of the objective function (f_{obj}) from 30 000 to 1000, enlightening a better quality of sensors tuning. Any increase of that validation criterion alerts operators on possible plant up-set.

Furthermore, Wacker also follows the ratio $\frac{\chi^2}{f_{obj}}$, based on the chi-square statistical test (χ^2). The chi-square test value depends on the number of redundancies of the system and on the statistical threshold of the test, typically 95%. Active bounds are considered as adding new levels of redundancy.

Two different cases are possible, whether the ratio is higher or lower than 1:

- If $\frac{\chi^2}{f_{obj}} > 1$: no presence of gross errors in the set of measurements can be expected;
- If $\chi^2_{f_{obj}} \leq 1$: presence of at least one gross error in the set of measurements is expected.

A data reconciliation result can only be exploited if the chi-square test is satisfied.

Gross error detection and elimination is a feature of validation software that will be detailed in paragraph 3.2.

3.2 KPI (key performance indicator) and their accuracy

KPI’s are identified in the same way as non-measured state variables. Because measurement errors have been withdrawn from the set of reconciled data, the best possible estimate of the plant performance is delivered. Thus, KPI’s can be accurately determined.

Typical KPI's include:
- global plant efficiency
- yields
- steam/carbon ratio, oxygen/carbon ratio, H₂/N₂ ratio, etc.
- specific energy consumption
- specific energy cost
- equipment duty and efficiency
- catalyst activity, etc.

Table 4 shows S/C ratio value and accuracy determined using data validation technology. In the third case, thermodynamics constraints were taken into account.

<table>
<thead>
<tr>
<th>Table 4: S/C ratio</th>
<th>Without meas. errors</th>
<th>With meas. errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/C ratio</td>
<td>rel. error</td>
<td>S/C ratio</td>
</tr>
<tr>
<td>without DR</td>
<td>3.545 4.24%</td>
<td>3.840 4.24%</td>
</tr>
<tr>
<td>with DR</td>
<td>3.514 3.52%</td>
<td>3.673 3.53%</td>
</tr>
<tr>
<td>with data validation</td>
<td>3.423 0.63%</td>
<td>3.432 0.63%</td>
</tr>
</tbody>
</table>

KPI accuracy is much improved with data validation than with data reconciliation. It is because data validation considers all available process information (temperatures, pressures, chemical reactions, equilibrium constraints, etc.), the redundancy level being thus higher.

Moreover, S/C ratio is much less sensitive to measurement bias, as it is here demonstrated with the introduction of a measurement error on the steam flow rate entering the reformer (see Table 4).

The different assets of data validation are described here after.
3.3 Non-linear thermodynamic based Data Validation

3.3.1 The limitation of (linear) mass balance based reconciliation

Most commercial data reconciliation packages are based on a linear solver and reconcile measurements on basis of overall mass balances. Moreover, bounds on variables are seldom considered, meaning that negative flow rates or negative inventories can appear in the results.

Additionally, mass balance based systems only offer a low level of redundancy: at the most one gets one level of redundancy around each node where all incoming and outgoing rates are measured. As a consequence, the improvement in data quality is low and the results are very sensitive to gross errors in the measurements.

On the contrary, thermodynamic-based data validation software provides additional equations increasing consequently the redundancy of the system, making it more accurate and less sensitive to measurement errors. At the same time, key performance indicators can be directly derived with a high level of accuracy and reliability.

Of course, using thermodynamic properties has its drawback: most of the equations become non linear making linear solvers useless. Therefore, one must then use a non linear algorithm as large scale SQP-IP (Sequential Quadratic Programming, Interior Point), which has been implemented to solve complex non linear data reconciliation problems.

3.3.2 Example: reconciliation of two distillation columns

Two consecutive distillation columns are used to separate styrene (the final product) from unreacted ethylbenzene (EB) which is recycled to the reaction section (see Figure 5).

Case 1 presents the design mass (and compound) balance of the plant.

Case 2 presents typical measured values with a significant bias on the flow rate of recycled EB (stream c4) as reconciled in a compound based data reconciliation system. The bias is clearly identified (3.70) and corrected (3.32) so that the styrene and EB recovery are accurately determined (87.86 ± 0.41%).

Case 3 presents the same input reconciled using a simple mass balance system, which is not able to detect the measurement error and so calculates a wrong recovery of EB and Styrene.

One can see that the accuracy of the computed recoveries is considerably better when performing a compound balance than with a simple mass balance (in this case, more than ten times better).
3.4 Exploiting LV and LLV equilibria as source of information

Variables describing the state of a process must be reconciled to verify consistency constraints representing basic laws of physics; dew point and boiling point constraints in condensers, evaporators, or distillation columns are a source of information exploited by thermodynamic based validation software.

The process of industrial ammonia production may be subdivided into three distinct parts: synthesis gas production, compression section and ammonia synthesis loop. Process natural gas (PNG) and steam enter the primary reformer reactor, after sulfur removal of PNG. High temperature and low temperature shift sections follow the secondary reforming, where compressed air is also introduced. After the methanator section, synthesis gas is partially recycled upstream in the process and partially introduced in the hyper compressor section. Finally, gas enters the ammonia synthesis loop.

Figure 6 represents an ammonia synthesis loop PFD, which can be considered as having a digit 8 structure with a heat exchanger in the middle.

The synthesis gas enters the hyper compressor as well as the recycle gas, then the outlet (process gas) is cooled and partially condensed (“106F”) to recover ammonia. Afterwards, gas is heated through a counter-current heat exchanger, goes to the reactor section, then again to the same heat exchanger (at lower pressure than the cold process gas) before closing the synthesis loop.
Condenser temperature (see Table 5) reflects a compromise between ammonia content and flow rate of the gas entering the reactor section. Considering condenser pressure as constant (158 bar) to simplify the following illustration, and condenser inlet composition and vapor flow rate specified, three different “what if” cases were studied (see Table 6).

Table 5: Condenser 106F measurements

<table>
<thead>
<tr>
<th>Condenser 106F</th>
<th>Raw measurements</th>
<th>Validated measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>T °C</td>
<td>-14 °C</td>
<td>-16.50 °C</td>
</tr>
<tr>
<td>Vapour flow rate</td>
<td>456890 Nm³/h</td>
<td>455040 Nm³/h</td>
</tr>
<tr>
<td>P in barg</td>
<td>165</td>
<td>165</td>
</tr>
<tr>
<td>T in °C</td>
<td>185</td>
<td>181</td>
</tr>
<tr>
<td>%mol NH₃</td>
<td>2.4</td>
<td>2.829</td>
</tr>
<tr>
<td>%mol inerts</td>
<td>11.2</td>
<td>11.07</td>
</tr>
</tbody>
</table>

Table 6: LV equilibrium calculation results

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>-14</th>
<th>-16.5</th>
<th>-20.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapour fraction</td>
<td>0.9586</td>
<td>0.9558</td>
<td>0.9517</td>
</tr>
<tr>
<td>%mol NH₃ in vapour phase</td>
<td>3.10</td>
<td>2.83</td>
<td>2.40</td>
</tr>
<tr>
<td>Vapour flow rate</td>
<td>456330</td>
<td>455039</td>
<td>453049</td>
</tr>
<tr>
<td>%mol H₂ in liquid phase</td>
<td>0.38</td>
<td>0.36</td>
<td>0.33</td>
</tr>
<tr>
<td>Liquid flow rate</td>
<td>14.95</td>
<td>15.93</td>
<td>17.44</td>
</tr>
</tbody>
</table>
First, temperature was assumed equal to measured temperature –14°C. In the second column, temperature was considered the same as validated value –16.5°C. Finally, temperature is computed for ammonia content in vapour phase identical to raw measurement 2.40%.

Thus, several information can be extracted from results:
- At 158 bar, hydrogen solubility rises slightly with temperature.
- If temperature is considered equal to the raw measurement (-14°C), ammonia vapour composition estimated is considerably different from measurement (3.1% instead of 2.4%). This proves inconsistency in measurement set. On the contrary, vapour flow rate computed seems closer of measurement value.
- In second “what if” case, we reproduce validated data.
- To reach specified reactor inlet ammonia content (2.4%), temperature should be -20.8°C, instead of the -14°C measured. Therefore, vapour flow rate decreases.

This illustration shows the limitations of any partial “manual” validation.

Why is validated data so important in this particular case? The “what if” computations show how big is the uncertainty on different data. The more NH$_3$ you condense in the condenser the better, but this has a direct cost, the energy spent in the cooling loop. How to optimize any compromise if only non validated data are available? Does it make sense?

3.5 Exploiting reactions and chemical equilibria as source of information

This point can be illustrated with the same ammonia process described previously (see Figure 6), in particular its reactor section.

Ammonia is produced in a two adiabatic catalytic stages reactor. Reactants are nitrogen and hydrogen, entering the reactor in a stoechiometric mixture. Ammonia formation reaction is exothermic and reversible; therefore, gas leaving the first adiabatic stage is cooled before entering the second stage. Furthermore, the model considers a performance equation, consisting in the introduction for both adiabatic stages of a ΔT_{eq} parameter, which takes into account deviation from chemical equilibrium. Because reaction is exothermic, ΔT_{eq} will be positive.

Thus, a key information to extract from data validation considering reactions and chemical equilibrium is these ΔT_{eq} performance parameters (see Table 7). Results pinpoint a closer approach to equilibrium in the first catalyst bed.

Table 7: performance parameters

<table>
<thead>
<tr>
<th></th>
<th>ΔT_{eq} (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First catalytic bed</td>
<td>6</td>
</tr>
<tr>
<td>Second catalytic bed</td>
<td>14</td>
</tr>
</tbody>
</table>
In addition, it is possible to visualise validated ammonia concentration profile together with equilibrium curve and plant measurements (see Figure 7). The two vertical lines represent measured inlet and outlet temperatures of the heat exchanger between the two catalyst beds.

Figure 7: Synthesis reactor equilibrium curve

One cannot accept a measurement point above the equilibrium curve. This erroneous measurement set could not have been noticed otherwise than exploiting reactions and chemical equilibria as source of information.

3.6 Exploiting all process information

As explained before, data validation is based on measurement redundancy. The plant structure yields additional information, which is exploited to correct measurements. Consequently, considering a process at a global scale brings more accuracy to validated data than taking into account only a local section of the process. It is namely the same for the accuracy evolution of key performance indicators.

Considering the same ammonia process as before, the H_2/N_2 ratio in the synthesis loop was estimated in several ways. First, only a local section of the process was considered (the synthesis loop). Then, additional information of the plant was successively added until the whole process was taken into account. Results pinpoint a substantial reduction of the KPI inaccuracy when more and more process information is considered (see Figure 8).

It was previously demonstrated that validation technology avoids error propagation. In fact, data validation software propagates accuracy. This technology combines process information and raw measurement data. The more information of the process is taken into account, the more non-measured data (and so KPIs) will be accurate and reliable.
3.7 Detection of leaks

Validation technology reveals itself able to enlighten process performance degradation sources and to operate the plant closer to its ultimate performance. In particular, validation allows detection of leaks. This can be illustrated by a practical case-study related to previous ammonia plant, where a leak in a NH₃ synthesis loop was discovered. It could have been hardly detected by other tools than validation technology.

A Carbochim plant did operate in Belgium at 90 % of nominal capacity; a retrofit was studied to restore the expected capacity. Validation did enlighten a leak in the heat exchanger in the middle of the 8-structure synthesis loop (see Figure 6). Thus, part of the process gas was cycling around from the compressor and condenser section, to the heat exchanger and again to the compressor. That leak had not been suspected. It did probably develop and increase smoothly; how could it have been discovered in the absence of the appropriate tool? The process plant has been shut down for isolating leaking tubes in the exchanger and was started again to easily achieve the expected production rate without any costly additional investment.
4 Advanced features of Validation Technology

4.1 Trivial redundancy

Trivial redundancy cases are met when the validated value of a measured variable does not depend at all upon its measured value but is inferred directly from the model.

This can occur in particular in L/V equilibrium drums, where complementary thermodynamic constraints must be respected. Indeed, if e.g. temperature, pressure, flow rate and composition of a condenser inlet stream were known together with the unit pressure drop, any complementary measurement (e.g. outlet temperature) would be considered as a trivial redundancy. Proper validation software detects trivial measurements, which then are no more considered as measured. As a consequence, their measurement accuracy will not affect the accuracy of the respective validated variable.

4.2 Gross error detection/elimination

Gross errors are detected by means of a chi-square (χ^2) statistical test, which has been previously explained at point 2.1.

4.2.1 Detecting Gross Errors

The χ^2 statistical test enables to detect the presence of gross errors in the sets of measurements. The χ^2 value depends on the total number of redundancies of the system, active bounds being considered as adding new levels of redundancy, and on the statistical threshold of the test, typically 95%.

If the weighted sum of penalties is higher than the χ^2 threshold value, than there is a significant suspicion that gross errors exist. In such a case, all results obtained with that model are to be used with caution: validated values, identified performance factors and their reconciled accuracy.

4.2.2 Eliminating Gross Errors: The Highest Impact method

Identifying the actual source of the gross errors is not always trivial and requires a careful analysis of the results.

The conventional technique (“Highest Penalty method”) is to ignore the measurements for which the highest corrections are made. This method is known to be inadequate in detecting some gross errors, for example when the corresponding measurement is specified with a high level of accuracy as compared to the other measurements.

On the contrary, the “Highest Impact method” detects the impact on the total sum of penalties of removing each of the measurements. This approach is in principle highly time-consuming and is therefore not used by most of data validation packages. However, by means of specific algorithm, one can enable to apply this technique in a calculation time of the same order of magnitude as a single validation run.
4.3 How to validate with petroleum fractions

The modelling of a refinery process or a part of it is always confronted to the complexity of the petroleum and its products. Indeed, crudes and petroleum cuts are mixtures of a large number of chemical compounds, thus making it very difficult to model their properties without accurately knowing their composition. Therefore, it is common practice to model such streams by the well-known pseudo-component concept.

4.3.1 Concept

A pseudo-component is a hypothetical molecule characterised by its density and its boiling temperature. Those parameters are then used to estimate the other thermodynamic properties (like critical properties or specific heat capacity) using empirical correlations as proposed for example by American Petroleum Institute (API).

According to the crude type and origin, different pseudo-components must be used to get an accurate representation. The usual way of characterising petroleum fractions is to generate a defined mixture of pseudo-components, with given boiling point, having the same properties as the fraction. Namely, their fraction and their density are identified in order to match the stream distillation curve and density. Most common standards for distillation curves are True Boiling Point (TBP) and ASTM; each of them can be expressed on a weight basis or on a volume basis.

Figure 9: Decomposition in pseudo-components based on a TBP curve of a gas oil

Several petroleum cuts involved in a distillation process can be expressed as a data validation system involving:
- as variables, the pseudo-compounds densities and their fractions in each stream;
- as equations, the mass balances of the distillation column for each pseudo-component;
- as measurements, the densities and TBP or ASTM curves of the streams.

On this basis, data validation will generate a calculated distillation curve from measured TBP or ASTM data, as it identifies density of each pseudo-compound; this involves minimisation of weighted deviation between measured and calculated distillation points,
under density constraints, mass and thermal balance constraints. The other thermodynamic properties of the pseudo-compounds are subsequently estimated.

4.3.2 Crude oil atmospheric distillation example

Following example concerns the modeling of a crude oil distillation unit (CDU), preceded by the preheating train [ref. 4]. The crude oil is separated into six fractions: naphtha, jet, kerosene, gasoline, diesel and residue.

Figure 10: Preheat train and CDU

Measurements available to perform the modeling are:
- density and distillation curve (ASTM-D86) of the petroleum cuts;
- temperature, pressure and flow rates of the streams;
- design data of the exchangers.

These measurements are validated and the other thermodynamic properties of pseudo-compounds are subsequently computed.

Furthermore, with several sets of measurements taken in one year it was also possible to confirm fouling problems for the exchangers at the end of the preheating train. Indeed, their heat transfer coefficient decreased by a factor of two after one year of operation.

Thus, data validation uses a rigorous method integrating robustly complex distillation systems. This forms a sound basis for the analysis of refinery performance and for instance of a retrofit potential.

4.4 APC (advanced process control) benefits from working with Data Validation

Nowadays plants face a market where margins are under pressure due to global competition, more stringent environmental regulations, a higher demand for flexible operation and more severe safety requirements. Control techniques are required to increase those margins. APC (advanced process control) systems can help optimize control to deal with those challenges [ref. 5].
Data Validation technique enhances the quality of information allowing APC systems to work more efficiently.

4.4.1 Data Validation – APC: how they work together

Figure 11 describes how data validation software works hand to hand with an APC system in order to improve its efficiency.

Figure 11: Data Validation working together with APC system

A plant process is permanently submitted to disturbances, causing changes in operating conditions. APC systems use a reduced dynamic model to predict the plant behaviour when submitted to disturbances, and thereafter take the adequate actions to counter them (Multiple Input Multiple Output – MIMO – Control).

Without data validation, input and output streams’ measurements are introduced directly into a dynamic model with no ways to check raw information reliability and coherency. Some measurements could be erroneous and balances not be closed.

Data validation software uses input and output stream raw measurements in order to provide one coherent and accurate data set. With data validation, APC systems are allowed to take actions onto the process on basis of coherent and reliable measured and non measured data. Validated data contains measurements, equipment parameters KPIs and many other non measured but validated data. The a posteriori accuracy of measurements and KPIs is provided.

When dynamic model is tuned according to validated data benefits are generated as early as at the model design stage.

4.4.2 Benefits at model design stage

Reduced dynamic model must be “certified”: dynamic model parameters are chosen and adjusted in order to produce results identical to measurements ($\Delta = 0$ on figure 11).

Benefits using validation techniques are double:
- Measurements, to which dynamic model results are compared, are checked and corrected by data validation techniques. Measurements are much more reliable (they represent the actual process operation) and thus the model will be it too;
- Data validation technology reduces the number of principal components needed to represent process variability, allowing the reduced dynamic model to represent the same level of variability using a model with a lower number of components (see Figure 12) [ref. 6].

Figure 12: Level of variability according to number of principal directions

![Graph showing explained variance vs. principal components](image)

Figure 12 illustrates the number of principal directions (or components) necessary to represent the variability of given system when the latter is based on validated data or on raw measurement data. Taking into account more principal components allows explaining a higher fraction of the total process variability:
- when using raw measurements, a large number of components is needed to explain most of process variability (upper limit is the number of original variables – 186);
- when using the validated data sets, the number of significant principal components tends to a much lower number than the number of variables (upper limit is the number of degrees of freedom of the data validation model).

This reduction in the problem size allows the dynamic model to be more reduced, when based on validated data (accuracy increased and noise reduced). Monitoring of the process is made easier and the computing demand is decreased.

Furthermore, since data validation technique enforces the strict verification of all mass and energy balance constraints, use of this technology ensures that the principal components represent the proper process behaviour.

4.4.3 Benefits at operation stage
Process control behaviour can be very different whether APC is working together with data validation.

Figure 13 presents the evolution of a process yield (KPI) throughout time (Run) whether data validation software is used:
- without data validation, APC detects a KPI variation and tries to stabilize the process operation. Based on raw data with embedded errors APC takes actions risking to be un-useful, resources-expensive, and even process-disturbing;
- with data validation, APC considers actual process operation (validated, measured and non measured, data are used as inputs to APC). APC can now use all of its resources on optimization of the process rather than more stable operation.

Figure 13: KPI follow-up and control

5 Applications

5.1 On-line Process Performance Monitoring

The goal is to deliver on a periodic basis (typically each 10 to 60 minutes) a coherent heat and mass balance of a production unit. In addition to the compound balances, the laws of energy conservation are introduced in the form of heat balances. This more detailed modeling of the production unit allows validation software to work as an advanced process soft sensor and to determine reliable and accurate Key Performance Indicators (KPIs).

Typical benefits are:
- access to unmeasured data, which is quantified and related accuracy determined.
- early detection of problems: sensor’s deviation and degradation of equipment performance are pinpointed.
- quality at process level: anticipate off-spec products by carefully monitoring the process.
- work closer to specifications: as the accuracy of measurement data improves, the process can safely be operated closer to the limits. This feature is reported as being financially the most productive.
- decreased number of routine analyses (up to 40% in chemical applications).
- reduced frequency of sensor calibration (only faulty sensors need to be calibrated).

Improvement of the product selectivity in a BASF plant

This example shows how the operation of a production unit at BASF’s operating division of performance chemicals can be improved using data reconciliation [ref. 7]. The product C is produced by conversion of component A with component B using 2 reactors. Several undesired by-products are generated, thus selectivity has to be maximized. Process model generated took into account only component mass and atomic balances.

Several data sets at different process conditions were validated and from those the selectivity of product C was calculated. The left diagram of figure 14 (courtesy of BASF) shows this selectivity as a function of residence time in the first reactor, calculated from measured values; the diagram on the right shows the results from validated data.

Figure 14: Nitrile selectivity as a function of residence time in the reactor: raw data versus reconciled data (courtesy of BASF – ref. 7)

![Graph showing selectivity vs. residence time](image)

The selectivity, calculated from crude data, is spread widely and in some cases selectivity values of more than 100% were obtained, which is meaningless. The corresponding unfeasible area is marked on the charts. One could estimate in this case that a residence time of about 45 minutes is enough to maximize selectivity. However the selectivity based on reconciled data shows a clearer trend and does not exceed the 100% boundary. One realizes that residence time should be larger to the one estimated without data validation, in order to achieve the product optimal selectivity (residence time of about 48 minutes).

This example (considering only a restricted part of a process) shows that the evaluation of selectivity is meaningful only on basis of validated operational data. These lead to a safe interpretation of measurements. By doing so, a selectivity close to 99% can be obtained systematically, which is 2% higher than the average figure obtained without data validation.
Reducing energy consumption in the formic acid plant of BASF

A main problem at the formic acid production is the undesired back-reaction of formic acid during distillation, which increases the specific energy consumption [ref. 7]. This is shown in the left diagram of figure 15 (courtesy of BASF), on the basis of measured values within a time interval of 6 days. BASF looked for process parameters, which may influence the back-reaction, in order to decrease operation costs (specific energy consumption). One of them is the molar ratio of water to methyl formate, both educts of the formic acid synthesis.

Figure 15: Evolution of the specific energy consumption as a function of the rate of back reaction and parameters that influence this rate: crude data versus reconciled data (courtesy of BASF – ref. 7)

The diagram on the right shows the influence of the mentioned molar ratio to the rate of the unwanted back-reaction:
- without data validation (raw data, blue symbols), no influence is visible but only a cloud of data;
- using validated values (red symbols) a clear trend is visible, which means that reducing the molar ratio decreases the rate of back-reaction.

Both parameters could be correlated only by data validation. Due to these results the specific energy consumption can be reduced by 5%.

Data validation allows determining the most effective command variables for the control of a process. This study led to discover which control variable has a dominant effect on the said rate of back-reaction, and consequently on the specific energy consumption.

Performance monitoring at KKL nuclear power plant

On-line implementation of validation software in the nuclear power plant (NPP) of Leibstadt – Switzerland (KKL) generated substantial benefits (2 Mio US$/year) over the past 8 years.

The priority of NPP operators is to run their plant as close as possible to the licensed reactor power in order to maximise the generator power. To meet this objective, plant operators must have the most reliable evaluation of the reactor power. The definition of this power is
based on a heat balance using several measured process parameters among which the total feed water flow rate is the most critical value.

On-line implementation of validation software in the NPP of Leibstadt – Switzerland (KKL) has quantified the deviation between the actual and the measured feed water flow rate (see Figure 16).

![Graph showing the feed water flow rate over days of operation with a limit and reconciled value.](image)

Figure 16: Operating closer to the limits - site feed water flow of the NPP Leibstadt (courtesy of Kernkraftwerk Leibstadt – ref. 8)

In Figure 16, only one re-calibration is illustrated. This was used to convince the legal authorities about the reliability of the implemented validation technique. Validation results were also compared to test runs.

In agreement with the authorities in charge of safety of NPP, KKL nowadays recalibrates the measured flow rate on basis of the validated value, as soon as a deviation becomes significant. This enables the power plant to work close to its maximum capacity throughout the whole year (1145 MW). Prevention of losses due to heat balance errors increased the plant output by 5MW. In addition, the use of this technology also made the annual heat cycle testing obsolete and significantly reduced the cost for mechanical and instrumentation maintenance [ref. 8].

- **Performance monitoring of refinery units at LOR (Lindsey Oil Refinery)**

Online validation software is used at LOR for the performance monitoring of refinery units for several years.

One set of applications is about the follow-up of fouling of the heat exchangers of several preheat trains. The main goal of the application is to determine the appropriate amounts of anti fouling product in order to maintain an adequate operation of the preheat train and thus energy efficiency of the plant.
Another set of applications concerns the follow-up of furnaces and power plant boilers. The goal is here to determine with sufficient reliability and accuracy their energy efficiency. Any inappropriate operation can easily be detected and corrected when necessary.

- **Performance monitoring of PE plant at Gonfreville**

The application enables to detect any deviation within the instrumentation and provides guidance to the operators for the recalibration of the online analyzers. In addition, it ensures that the online soft sensors remain valid by counter-checking the quality of the instrumentation on which they rely.

5.2 On-line Production Accounting

5.2.1 Description and benefits

This solution aims at providing a clear view of the production accounting, on a daily basis, of a whole industrial site: rigorous and automatic procedure for production accounting based on closed material balances. These material balances can be performed either:

- on a global mass balance basis: mass flow rates, in terms of tons entering and tons going out of each production unit, are reconciled to generate a coherent mass balance of the whole site. This approach is typically applied in refineries and covers the whole site including the tank farm.

- on a chemical compound basis: additional information is then required on the composition of the various streams and the reactions schemes. This approach is typically applied in chemical and petrochemical production plants.

Typical benefits are:

- actual plant balances: closed balances are key elements as much for effective production accounting as for efficient performance monitoring.

- decrease of unidentified losses and surpluses: abnormal conditions leading to losses and/or apparent surpluses are identified and can be corrected before they impact the economics of the plant.

Several real cases can be referred to, namely an adiponitrile plant and two refineries.

- **Production accounting at ERE\(^1\) and Holborn refineries**

Online validation software establishes the daily mass balance of the whole ERE refinery, covering about 150 tanks and about 50 production or blending units. Only a global mass balance (on tons basis) is made around each unit.

The person in charge of the use (and maintenance) of the system spends between 10 and 15 minutes per day to generate all the validated reports and inputs for the production accounting.

\(^1\) BP refinery located in Lingen-Germany
More recently the refinery Holborn has installed a similar system, which also automatically
detects abrupt changes in measured data identifying possible changes in operation or
instrumentation failure.

- **Production accounting at Butachimie**

In this application the modelling includes compound balances of each main equipment of an
adiponitrile production facility. Reconciled compound balances are provided on a daily
basis. All main chemical compounds as well as the catalysts used in the system are
rigorously tracked all over the unit.

6 Conclusion

Data reconciliation and validation is nowadays a mature technology. However it is often
confused with flowsheeting and process simulation. Still a lot has to be done to inform
engineers and managers who did not learn about this technology during their studies. We
have tried to enlighten the very high diversity of applications and of benefits that this
technology can provide for the best profitability of the process industry.

7 References

(2004), http://www.belsim.com

Distillation Unit in Term of Data Reconciliation with ASTM or TBP Curves as Direct
Input – Application : Crude Oil Preheating Train”, Proceedings of ESCAPE-9

between Data Reconciliation and Principal Component Analysis”, Computers and
